
MULTISCALE DICTIONARY LEARNING FOR HIERARCHICAL SPARSE
REPRESENTATION

Yangmei Shen, Hongkai Xiong

Department of Electronic Engineering
Shanghai Jiao Tong University, China

{shenyangmei0214, xionghongkai}@sjtu.edu.cn

Wenrui Dai

Department of Biomedical Informatics
University of California, USA

wed004@ucsd.edu

ABSTRACT

In this paper, we propose a multiscale dictionary learning

framework for hierarchical sparse representation of natu-

ral images. The proposed framework leverages an adaptive

quadtree decomposition to represent structured sparsity in d-

ifferent scales. In dictionary learning, a tree-structured reg-

ularized optimization is formulated to distinguish and repre-

sent high-frequency details based on varying local statistics

and group low-frequency components for local smoothness

and structural consistency. In comparison to traditional prox-

imal gradient method, block-coordinate descent is adopted to

improve the efficiency of dictionary learning with a guaran-

tee of recovery performance. The proposed framework en-

ables hierarchical sparse representation by naturally organiz-

ing the trained dictionary atoms in a prespecified arborescent

structure with descending scales from root to leaves. Conse-

quently, the approximation of high-frequency details can be

improved with progressive refinement from coarser to finer

scales. Employed into image denoising, the proposed frame-

work is demonstrated to be competitive with the state-of-the-

art methods in terms of objective and visual restoration qual-

ity.

Index Terms— dictionary learning, multiscale represen-

tation , structured sparsity, hierarchical structure, image de-

noising

1. INTRODUCTION

Sparse representation over redundant dictionary is a power-

ful model to adapt real-world signals, which is validated by

well-established theoretical frameworks and state-of-the-art

empirical results [1]. Its basic assumption suggests that a nat-

ural signal x ∈ R
m is approximately represented by a sparse

linear combination of atoms selected from an overcomplete
dictionary D = [d1, · · · ,dp] ∈ R

m×p (m < p), with the

The work was supported in part by the NSFC grants 61501294,

61622112, 61529101, 61472234, 61425011, China Postdoctoral Science

Foundation 2015M581617 and Program of Shanghai Academic Research

Leader 17XD1401900.

corresponding sparse representation vector α ∈ R
p. In gener-

al, a sparse coding problem is formulated to derive the sparse

representation model.

min
α∈Rp

1

2
‖x−Dα‖22 + λ‖α‖1, (1)

where λ is a regularization parameter balancing fidelity and

sparsity, and ‖α‖1 is a sparsity-inducing norm leading to the

well-known Lasso or basis pursuit problems.

In comparison to pre-defined analytical dictionaries e.g.,

wavelets, the trained dictionaries can significantly improve

the approximation performance for natural images by captur-

ing the varying structures [2, 3]. �1-regularized optimization

was formulated to adaptively derive the dictionaries from the

sampled signals with batch gradient descent. These batch pro-

cedures would fail for large-scale high-dimensional signals,

due to high computational complexity and low convergence

speed. Thus, online dictionary learning methods have been

widely concerned to achieve faster convergence with guar-

anteed accuracy [4, 5]. However, �1-regularized optimiza-

tion is still restricted for sparse representation of multiscale

high-dimensional signals like images and videos, as it inde-

pendently generates the atoms by ignoring their structural re-

lationship [6, 7].

To sufficiently exploit prior knowledge, structured spar-
sity methods were developed to adopt sparsity-inducing regu-

larization capable for the higher-order information about the

patterns of nonzero coefficients. One such possibility is the

search for group dictionaries, where group structures of bags

of visual descriptors at image level are considered for image

classification [8]. Another alternative has been the pursuit

of hierarchical dictionaries, which involve a tree-structured

group-Lasso penalty addressed efficiently by dedicated prox-

imal methods [9]. Inspired by independent component anal-

ysis, [10] goes beyond one-dimensional patterns and puts a

2-D grid structure on decomposition coefficients to infer topo-

graphic dictionaries by network flow optimization. Since all

the above algorithms work off-line, [11] develops an online

structured learning scheme using variational methods, mak-

ing it possible to efficiently process large and partially ob-

servable training data. However, all of these structured dictio-
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naries have been traditionally restricted to fixed atom scales,

which is insufficient to characterize the diverse and complex

natural phenomena.

On the other hand, multiscale dictionaries have been con-

sidered to take advantage of multiscale property and data

matching capability. Mairal et al. [12] fully decomposed

images through a quadtree structure and learn multiple sub-

dictionaries from patches with different scales using opti-

mization methods like K-SVD. Modeling dictionary as a mul-

tiplication of Discrete Cosine Transform by a learned sparse

matrix, the double-sparsity formulation made the first suc-

cessful attempt towards the harmonic analysis [13]. In the

context of Wavelet, learning process was applied into the

analysis domain of Wavelet decomposition, where separate

sub-dictionaries at different bands are trained by K-SVD [14].

Recently, Sulam et al. [15] extended the double-sparsity mod-

el by replacing the DCT dictionary with a new cropped

Wavelet decomposition, which enabled dictionary learning to

be up-scaled to a relative higher dimension. However, mul-

tiscale dictionaries would degrade the performance of sparse

representation without considering the underlying dependen-

cies or hidden structures between dictionary atoms.

In this paper, we develop a multiscale dictionary learn-

ing framework to enable hierarchical sparse representation,

which naturally organizes atoms in a hierarchy with a de-

scending order for node-sizes and increasing frequencies

from root to leaves. Adaptive quadtree decomposition is

proposed to recursively partition the images based on lo-

cal statistics, which groups low-frequency components into

large patches and distinguishes high-frequency details in s-

mall ones. A hierarchical regularized optimization is formu-

lated to enforce sparsity patterns with rooted and connected

subtrees. Thus, effective decomposition of image content is

achieved using atoms from different scales. To improve learn-

ing efficiency, a joint hierarchical sparse coding step by prox-

imal gradient method and a separate multiscale atom update

procedure via block-coordinate descent are alternately per-

formed. The learned dictionary is able to make sparse repre-

sentation based on patches across multiple scales under a con-

straint of the tree-structured prior for nonzero patterns. For

signal approximation, large atoms near the root provide low-

frequency components, whereas fine details are hierarchically

refined by small atoms in finer scales. In a nut-shell, the pro-

posed framework can effectively represent multiscale signal-

s with hierarchical trained dictionaries from sampled signal-

s with multiple scales constrained by tree-structured sparsi-

ty. To validate the efficacy, the proposed framework was em-

ployed into image denoising task. Experimental results show

that it is competitive with the state-of-the-art methods and al-

lows practical applications to take a more global outlook over

the diversity of real world signals.

The rest of this paper is organized as follows. Section 2

presents the proposed framework of multiscale dictionary

learning for hierarchical sparse representation. Experimen-

Fig. 1. The proposed framework for dictionary learning.

tal results are shown in Section 3 for validation. Finally, we

conclude the contributions in Section 4.

2. LEARNING MULTISCALE DICTIONARY FOR
HIERARCHICAL SPARSE REPRESENTATION

It is widely known that natural image information spread-

s across multiple scales. Depending on specific structures,

different images prefer different patch sizes for optimal rep-

resentations. As depicts in Fig. 1, we present an attempt to

explicitly exploit multiple scales simultaneously: using an ef-

ficient quadtree (QT) decomposition, an input image is re-

cursively split into quadrants up to the selected sizes based

on local features; by alternating between a hierarchical sparse

coding step and a multiscale dictionary update procedure, dic-

tionary is learned to sparsify and finely adapted to the training

data; besides, a tree-structured sparsity prior is enforced to or-

ganize the learned atoms in a prespecified dendriform fashion,

with larger atoms close to the root whereas the smaller near

the leaves.

2.1. Adaptive Quadtree Decomposition

To achieve a variable size partition while avoiding the cost

of more sophisticated techniques, an efficient quadtree de-

composition is employed due to its effective balance between

adaptivity of segmentation and simplicity of implementation.

As for our setting, the primary purpose is to isolate the high

detail regions into small sizes while grouping the low fre-

quency regions into patches as large as possible, expecting to

enhance the potential expressive force of the dictionary. In-

spired by [16], local residual mean and variance values are

jointly used as a simple yet effective measurement to assess

the amount of details in a patch.

Given an input image, it is broken into fully overlapping

patches of
√
m×√m pixels which are treated as independent
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Fig. 2. Illustration of a tree-structured dictionary with p = 19.

Atoms are embedded in nodes with decreasing sizes from root

to leaves. Every node together with its descendants compose

the tree-structured set of groups G. The nonzero atoms form a

connected and rooted subtree (in red contour) and the remain-

ing nodes respect the constraint (2).

root nodes of quadtrees. For each root-patch, the local mean

is calculated and removed to form the residual. At this stage,

a binary decision is made whether to terminate the process or

descend further into the tree. For this purpose, both the local

variance and magnitudes of means for all
√
s×√s subpatches

within the current
√
m×√m residual root-patch are comput-

ed and compared with corresponding thresholds Tv and Tm.

If either the variance is sufficiently small or all the
√
s ×√s

means drop below Tm, this patch is identified as a leaf node.

Otherwise, the mean-removed residual becomes a new parent

node divided further into four children of size m
4 pixels. In

turn, all the internal nodes are processed in the same manner,

until obtaining leaves or reaching the allowed minimum size√
s×√s in the tree.

The rational behind this strategy is that natural images

typically contain large smooth areas as well as strong dis-

continuities such as textures, sharp edges and corners. While

the patch variances consistently reflect the visual saliency, the

means of image intensity usually vary quite slowly and even

keep fairly constant over large smooth regions. Therefore for

the latter case, if every sample in such a homogeneous region

is minus the average sample amplitude, the ultimate mean val-

ue of an arbitrary patch in the mean-removed residual region

will approach to zero.

2.2. Hierarchical Sparse Representation

In order to infer a dictionary to simultaneously capture fre-

quency information from the different-sized examples, we

propose to encode a tree-structured prior across multiple s-

cales, for an intriguing property of increasing frequencies

from root to leaves.

In Fig. 2, dictionary atoms {d1, · · · ,dp} ∈ D are em-

bedded in a directed tree T of p nodes with sizes present-

ing in decreasing order from root to leaves. For an input

signal x ∈ R
m, we expect its sparse decomposition vec-

tor α ∈ R
p w.r.t. the dictionary admits a specific form of

nonzero pattern: a rooted and connected subtree of T . Define

descendants(j) ⊆ {1, · · · , p} consists of the node j and all

its descendants, such a constraint can be formulated as follow

αj = 0⇒ [αk = 0 for all k ∈ descendants(j)], (2)

with a description that if a dictionary atom is not used in the

decomposition, its descendants in the tree should not appear

in the decomposition either. Moreover, a convex relaxation

has been proposed and applied in different contexts [17, 18,

19]. Denoting 2{1,··· ,p} the power-set composed of all the 2p

subsets of {1, · · · , p}, we firstly give the follow definition.

Definition 1 (Tree-Structured Set of Groups). Given a direct-
ed tree T containing p nodes, a tree-structured set of groups
G � {g}g∈G ⊆ 2{1,··· ,p} consists of all the paths starting
from every node in the tree down to leaves. For such a set
of groups, it satisfies that |G| = p and

⋃
g∈G = {1, · · · , p},

moreover, for any two groups g , h ∈ G, if g ∩ h 	= ∅, it must
holds that either g ⊂ h or h ⊂ g .

For a tree-structured set of groups G, the hierarchical

sparsity-inducing normH is defined as

H(α) �
∑
g∈G

ωg‖αg‖2, (3)

where αg ∈ R
|g| is the sub-vector consisting of the entries of

α indexed by g , and ωg denotes a positive scalar weight for

group g . Indeed, when regularizing by H, some of the sub-

vectors αg are set to zero for some groups g ∈ G, implying

the corresponding nodes in some complete subtrees of T are

removed from the sparse linear combination. Consequently,

the rest of nodes exactly form the desired connected and root-

ed subtree-structured sparsity pattern.

Since the dictionary is shared by all the training patch-

es, the root-atom must appear in every sparse decomposition,

gathering mostly the low frequencies; conversely, the deeper

the atoms in the tree, the more specific they become, and the

more high frequencies are involved. This makes sense in light

of a hierarchical representation: by linearly combining atoms

from root to leaves, large atoms provide low-frequency infor-

mation, whereas abundant details are progressively refined by

finer scales in deeper layers.

2.3. Multiscale Dictionary Learning

Employing the hierarchical regularization H in learning pro-

cess means that the learned atoms will self-organize to match

the tree-structured prior. In our scheme, we propose to alter-

nate a joint hierarchical sparse coding procedure with a sepa-
rate multiscale dictionary update stage to cope with learning

across several existing scales.

Algorithm 1 summarizes the proposed learning scheme.

Before sparse coding, an appropriate pre-processing of zero-

padding is applied to balance the discrepancy across scales.
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Algorithm 1 Multiscale Dictionary Learning.

1: Input: Multiple-sized training samples collected from QT de-

composition X = {X1, · · · ,XK}, pre-defined tree-structured

set of groups G = {g}g∈G , positive weights {ωg}g∈G , regular-

ization parameter λ, number of scales K, number of iterations

T .

2: Initialization: D0 ∈ R
m×p.

3: for t = 1 to T do
4: Randomly sample root-patch x1

t ∈ R
m from X1.

5: Joint hierarchical sparse coding:
6: Proximal gradient method to solve

αt � argminα∈Rp
1
2
‖x1

t −Dt−1α‖22 + λH(α).
7: Separate multiscale dictionary update:
8: for k = 1 to K do
9: Select sub-patches [xk

1 , · · · ,xk
t ] ∈ Xk used during previ-

ous iterations.

10: Extract columns Dk
t−1 = [dk

1 , · · · ,dk
pk ] ∈ R

mk×pk with

zero-padding removed.

11: Block-coordinate descent with warm restart Dk
t−1 to opti-

mize

Dk
t � argminDk∈Ck

1
t

∑t
i=1

{
1
2
‖xk

i −Dkαk
i ‖22 + λH(αi)

}
.

12: end for
13: Add zero-padding to Dk

t for all k ∈ {1, · · · ,K}.

14: Put back each Dk
t in position to obtain Dt.

15: end for
16: Return DT .

While
√
m × √m root-atoms keep unchanged, each small

atom of m
4k−1 pixels in layer k is randomly embedded into a

big patch of size
√
m × √m with zero-padding elsewhere.

In this way, the tree-structured dictionary with multiple-sized

nodes can be simply used as a single-scale dictionary D ∈
R

m×p.

Joint Hierarchical Sparse Coding
For sparse coding, we follow the proximal gradient meth-

ods due to both optimal convergence rate for the class of first-

order techniques and capability to handle large nonsmooth

convex problems [9]. Regularized by the tree-structured nor-

m H in (3), objective function of the sparse decomposition

problem is formalized as follow

min
α∈Rp

1

2
‖x−Dα‖22 + λH(α). (4)

Here x denotes the input signal of dimension m, D ∈ R
m×p

is the learned dictionary, and λ is a non-negative regulariza-

tion parameter. Linearizing the smooth convex square loss

f(α) = 1
2‖x −Dα‖22 around the current estimate α̂ accord-

ing to the first-order Taylor approximation, proximal problem

is given below

min
α∈Rp

f(α̂) +�f(α̂)T (α− α̂) + λH(α) +
L

2
‖α− α̂‖22, (5)

where L > 0 is a parameter upper-bounding the Lipschitz

constant of �f . The added quadratic term keeps the update in

a neighborhood of α̂ where f stays close to its linear approx-

imation.

In effect, problem (5) can be viewed as a special case of

proximal operators associated with the tree-structured norm

λH, which admits closed solutions by a dual approach. It

has been further proved that the computation of the dual for-

mulation amounts to calculating a composition of elementary

proximal operators, which can be solved efficiently via accel-

erated gradient techniques. Complexity is close to linear in

the number of dictionary atoms p, implying almost the same

cost as traditional �1-norm regularized problems.

Separate Multiscale Dictionary Update
The procedure for updating dictionary atoms is based on

block-coordinate descent with warm restarts [5]. Concretely,

training set of patches collected from QT decomposition is

divided into K subsets as X = {X1, · · · ,XK} where K is

the number of scales. Each subset Xk = [xk
1 , · · · ,xk

nk
] ∈

R
mk×nk with 1 ≤ k ≤ K includes sub-patches with size of

mk = m
4k−1 pixels (as a reminder, m is the size of root node

in the quadtree).

At each iteration t, an arbitrary root-sample x1
t ∈ R

m

is randomly picked from X1 for computing hierarchical s-

parse vector αt over the previous dictionary estimate Dt−1.

For each scale k, the set of sub-patches used during previ-

ous iterations is chosen from Xk as [xk
1 , · · · ,xk

t ]. Dictio-

nary columns are extracted with zero-padding removed to for-

m Dk
t−1 = [dk

1 , · · · ,dk
pk
]. Their corresponding positions in

Dt−1 is recorded as well. The new atoms from Dk
t are updat-

ed by minimizing the following cost function, which is a good

estimate of the desired expected cost when t tends to infinity.

min
Dk∈Ck

1

t

t∑
i=1

{
1

2
‖xk

i −Dkαk
i ‖22 + λH(αi)

}
, (6)

where Ck � {Dk ∈ R
mk×pk , ‖dk

j ‖2 ≤ 1 for all j ∈
{1, · · · , pk}} denotes a constraint set to avoid any degenerate

solutions, and αk
i ∈ R

pk is the sparse sub-vector of αi corre-

sponding to columns in Dk. Since this problem admits sep-

arable constraints in updated blocks dk
j , a global optimum is

given by iterating block-coordinate descent sequentially over

columns along with an orthogonal projection onto the �2-ball.

After a few iterations, taking Dk
t−1 as a warm restart

for computing Dk
t has found to be effective. Accordingly,

the above procedure is applied separately to each scale k to

update atoms in Dk, which should be repeated K times to

achieve the complete update for dictionary D. In fact, what

makes the online dictionary update appealing is that it is sig-

nificantly faster than batch alternatives such as K-SVD, yet

it does not require a careful learning rate tuning like regular

stochastic gradient descent methods.

3. EXPERIMENTS

In this section, we present experiments on denoising natural

images compared to related methods, demonstrating the ap-
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(a) Noisy / 28.14dB (b) Denoised / 34.98dB

(c) Noisy / 28.14dB (d) Denoised / 33.61dB

Fig. 3. Visual performance for images barbara and hill with

noise level σ = 10.

plicability and potential of the proposed dictionary learning

methods for improved representation of image content.

3.1. Implementation Details

In our experiments, denoising have carried out with 12 s-

tandard benchmark images, each of which is corrupted by

synthetic white Gaussian noises with standard deviation σ
in {5, 10, 15, 20, 25, 50, 100} for pixel values in the range

[0; 255]. For quadtree decomposition, the root node size
√
m

and the leaf node size
√
s are chosen as 16 and 8 to conform

with commonplace in dictionary learning. Threshold values

Tm for means of all 8 × 8 patches and Tv for local variances

with patch sizes v ∈ {16, 8} are empirically set to 16, 80, 80,

respectively, to make an effective distinction between low-

and high-details regions. In hierarchical sparse coding, a pre-

defined balanced tree structure with 3 levels is tested. Branch

numbers for nodes in level 0 and 1 are set to {128, 2}, re-

spectively, and each child-node within depth 1 and 2 contains

2 and 1 atoms (with the root node contain no atom). These

settings imply a dictionary with a total of 512 atoms at two

different scales 16 × 16 and 8 × 8. For dictionary learning,

initializations are either a standard DCT one or a generic dic-

tionary learned on 106 natural image patches extracted ran-

domly from Pascal VOC’12 database.

3.2. Results

Table 1 reports the results obtained on each image for differ-

ent levels of noises, and Table 2 compares the average PSNR

on 12 images with performance achieved by several state-of-

Table 1. Denoising performance in PSNR(dB) on 12 standard

images. 7 different noise levels of σ between 5 and 100 are

tested.

σ 5 10 15 20 25 50 100

barbara 38.45 34.98 33.00 31.59 30.58 26.99 23.31

boat 37.32 33.89 32.10 30.82 29.87 26.66 23.70

bridge 35.59 31.10 28.84 27.44 26.43 23.70 21.43

cameraman 37.96 33.89 31.69 30.29 29.25 26.05 22.85

couple 37.36 33.86 31.92 30.61 29.58 26.24 23.12

fingerprint 36.61 32.50 30.30 28.79 27.65 24.35 21.21

flinstones 36.00 32.24 30.39 29.19 28.30 24.90 21.08

hill 37.10 33.61 31.84 30.66 29.78 27.00 24.20

house 39.91 36.84 34.96 33.71 32.78 29.56 24.96

lena 38.67 35.88 34.20 32.99 32.03 28.79 25.40

man 37.86 33.95 31.94 30.62 29.64 26.65 23.86

peppers 38.14 34.57 32.53 31.23 30.09 26.59 22.86

Average 37.58 33.94 31.98 30.66 29.67 26.46 23.17

Table 2. Quantitative comparative evaluation with GSM [20],

K-SVD [21], BM3D [22], EPLL [23] and Plow [24]. P-

SNR results are averaged on 12 benchmark images, with best

shown in bold.
σ 5 10 15 20 25 50 100

GSM 37.05 33.34 31.31 29.91 28.84 25.66 22.80

K-SVD 37.42 33.62 31.58 30.18 29.10 25.61 22.10

EPLL 37.36 33.64 31.67 30.32 29.29 26.12 23.03

Plow 37.38 32.98 31.38 30.13 29.30 26.38 23.24

BM3D 37.62 34.00 32.05 30.73 29.72 26.38 23.25
proposed 37.58 33.94 31.98 30.66 29.67 26.46 23.17

Table 3. Comparison with Multiscale K-SVD [12], with best

shown in bold.
σ 5 10 15 20 25 50 100

[12] 38.2 34.74 32.78 31.46 30.45 27.24 23.67

proposed 38.11 34.69 32.78 31.49 30.49 27.24 23.80

the-arts approaches of the literatures, namely, GSM [20], K-

SVD [21], BM3D [22], EPLL [23] and Plow [24]. Visual

examples are shown in Fig. 3. For further validation, we al-

so compared our results with another multiscale dictionary

learning work [12] in Table 3, in which denoising was con-

ducted on eight test images taken from our benchmark in-

cluding barbara, boat, cameraman, couple, hill, house, lena
and peppers. For lower noise (σ ≤ 10), their algorithm per-

forms slightly better than ours, but for other noise levels, we

outperform theirs with a marginal improvement of 0.04dB.

Note [12] is essentially a multiple-dictionary learning scheme

which handles different areas of input image separately. S-

ince our method only depends on a single dictionary, such a

comparison is a bit unfair as more dictionaries have a built-in

advantages over only one.

From these observations, conclusions are drawing as fol-

lows: First, our model consistently yields better performance

than others in the whole range of noise level, except for the

BM3D, which is well-known for outstanding denoising per-

formance. Second, the gap between our results with BM3D

is insignificant with a average of 0.04dB. One explanation for

such a degradation is that the truly effective number of atom-

s in our dictionary is
∑K

k=1 pk/4
k−1 with pk the number of
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atoms at scale k, since some atoms are mostly zeros; another

possibility may derive from the too rigid structure (connected

and rooted subtree) to flexibly select the most suitable atom

in terms of error reduction for signal approximation. Further

work is required to modify our scheme to achieve better gain.

4. CONCLUSION

This paper designs a multiscale dictionary learning scheme

for hierarchical sparse representation. Quadtree decomposi-

tion based on local features is leveraged to partition train-

ing images into smooth and rich-details areas. Regularized

by a tree-structured penalty, objective function is efficiently

optimized by alternating a proximal gradient method with a

block-coordinate descent. The learned dictionary naturally

organizes atoms in a hierarchy with a descending order for

node-sizes and increasing frequencies from root to leaves.

Natural signals are sparsely decomposed along a connected

and rooted subtree, with large atoms near the root provide

low-frequency information, whereas abundant details are hi-

erarchically refined by small atoms in finer scales. With ap-

plication to image denoising, experimental results show that

the proposed method is competitive with the state-of-the-art

results over several natural images with various noise realiza-

tions.
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